ASPECTA® ONE

Aspecta[®] One: Highland Step

In business for over one hundred years, Aspecta is devoted to leading the industry in Luxury Vinyl Tile (LVT) products. With the frequent introduction of new products, manufacturing methods and novel designs, the Aspecta brand of products represents the largest assortment of LVT in the market today.

Aspecta offers healthy, highperforming products based on biophilic designs inspired by nature. The company focuses on lowering the environmental footprint of its raw materials, products and operations. It embraces product transparency and continually strives to improve the material health of its products and contribute positively to indoor air quality. As a longtime leader in sustainability, Aspecta fosters collaborative partnerships to encourage, educate and motivate others to invest in a restorative ecosystem.

According to ISO 14025 and EN 15804

This declaration is an Environmental Product Declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. <u>Exclusions</u>: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace

tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. <u>Accuracy of Results</u>: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. <u>Comparability</u>: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment	
DECLARATION HOLDER	Metroflor	
DECLARATION NUMBER	4788116795.101.1	
DECLARED PRODUCT	Aspecta One Luxury Vinyl Tile	
REFERENCE PCR	IBU Part B PCR for Floor Coverings (20	16)
DATE OF ISSUE	February 16, 2018	
PERIOD OF VALIDITY	5 Years	
	Product definition and information about b	building physics
	Information about basic material and the r	naterial's origin
	Description of the product's manufacture	
CONTENTS OF THE DECLARATION	Indication of product processing	
	Information about the in-use conditions	
	Life cycle assessment results	
	Testing results and verifications	
The PCR review was conducted	by:	Institut Bauen und Umwelt e.V (IBU)
		PCR Review Panel
		PCR tested and approved by the SVR
This declaration was independen by Underwriters Laboratories INTERNAL	tly verified in accordance with ISO 14025 ⊠ EXTERNAL	Grant R. Martin
		Grant R. Martin, UL Environment
This life cycle assessment was ir ISO 14044 and the reference PC	dependently verified in accordance with R by:	Hours Sprin
		Thomas P. Gloria, Industrial Ecology Consultants

This EPD conforms with EN 15804

According to ISO 14025

Product Description

Product

The Aspecta[®] One product line has more than 45 trendsetting planks and tiles in styles and colors to suit every design palette. Unique surface embossing patterns create authentic, eye-catching textures that enhance the natural details of the product. Select designs and colors are also available in Aspecta[®] One's Ornamental Collection, which features wood and stone looks with beautiful overlay designs that provide unique accents. Made using the latest state-of-the-art technology, products are durable, long lasting and have a softer, warmer feel than traditional vinyl products. Aspecta[®] One has a 2.5mm gauge, 22mil wear layer and a ceramic bead finish and is backed by a 20-year, non-prorated limited commercial warranty and an unparalleled 10-year, prorated labor warranty.

This Environmental Product Declaration (EPD) encompasses all sizes, colors and styles of the Aspecta[®] One product line. The products meet all industry performance standards and are phthalate-free, formaldehyde-free and made from 100% virgin vinyl. For detailed Aspecta[®] One product information and technical specifications, please visit <u>http://www.aspectaflooring.com.</u>

Aspecta[®] One Luxury Vinyl Tile (LVT)

Range of Applications

Aspecta[®] One products are designed to be used in commercial applications, such as: healthcare, education, hospitality, retail and corporate. The product can also be used residentially.

According to ISO 14025

Product Standards and Performance

PHYSICAL PROPERTIES – PLANK AND TILE (DRYBACK)

Construction	Solid Vinyl Tile / LVT
Finish	Urethane Coating with Ceramic Bead Particles
Gauge	0.098 inch (2.5mm)
Wear Layer	22 mil (0.55mm)
Size (Plank)	4" x 24" (101.6mm x 609.6mm), 7.87" x 48.11" (200mm x 1222mm) and 9" x 60" (228.6mm x 1524 mm)
Size (Tile)	12" x 36" (304.8mm x 914.4mm), 18" x 18" (457.2mm x 457.2mm) and 24" x 24" (609.6mm x 609.6mm)
Warranty	Product: 20-year non-prorated limited warranty Labor: 10-year prorated limited warrany

PERFORMANCE STANDARDS

The Aspecta® One products considered in this EPD meet or surpass the following Technical Specifications:

- ASTM F1700 Standard Specification for Solid Vinyl Floor Tile: Class III, Type B
- EN ISO 10582 Resilient floor coverings Heterogeneous poly(vinyl chloride) floor covering Specifications: The products are classified as Domestic Heavy (Class 23), Commercial Heavy (Class 33), Light Industrial General (Class 42).
 - EN 14041 Resilient, textile and laminate floor coverings Essential Characteristics:
 - CE Certification under EN 14041.
 - B_{fl}-s1 per EN 13501-1 (Fire classification of construction products and building elements, Part 1: Classification using data from reaction to fire tests) when tested in accordance with EN ISO 9239-1 (Reaction to fire tests for floorings, Part 1: Determination of the burning behaviour using a radiant heat source) and EN ISO 11925-2 (Reaction to fire tests Ignitability of products subjected to direct impingement of flame, Part 2: Single-flame source test).
 - Content of pentachlorophenol (PCP) < 5ppm per EN 14041.
 - Class E1 Formaldehyde Emission when tested in accordance with EN 717-1, Wood-based panels Determination of formaldehyde release (Part 1: Formaldehyde emission by the chamber method).
 - Class DS Slip Resistance when tested in accordance with EN 13893, Resilient, laminate and textile floor coverings — Measurement of dynamic coefficient of friction on dry floor surfaces.
- US Fire & Smoke Testing
 - Class I per the 2018 International Building Code and NFPA 101 Life Safety Code when tested in accordance with ASTM E648/NFPA 253, Standard Test Method for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Energy Source.
 - ≤450 when tested in accordance with ASTM E662/NFPA 258, Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials.

Please refer to the Aspecta® website (<u>www.aspectaflooring.com</u>) for additional Technical Data about these products.

According to ISO 14025

Accreditations

FloorScore® Indoor Air Quality Certification

Gold Level Certification NSF/ANSI 332 Sustainability Assessment for Resilient Floor Coverings

Declare. DeclareSM Product Label

Health Product Declaration 2.1

Delivery Status

Aspecta[®] One products should be acclimated and stored between 65°-85°F (18°-29°C) and 35%-85% RH for 48 hours prior to installation. Products should be installed on a clean, dry, properly prepared floor by a qualified installer. Detailed installation instructions are available at <u>http://www.aspectaflooring.com.</u>

Base Materials/ Ancillary Materials

There are no chemicals present in the product that are listed in the Candidate List of Substances of Very High Concern for Authorization (SVHC).

Material Content

MATERIAL CONTENT ASPECTA® ONE

Component	Material	Amount	Renewable	Availability Non-Renewable	Recycled	Origin of raw material
Resin	Polyvinyl Chloride (100% virgin)	33%		Fossil limited		Global
Filler	Calcium Carbonate	54%		Mineral abundant		Global
Plasticizer	DOTP	11%		Fossil limited		China
Additives	Various	3%		Fossil limited		Global

Production of Main Materials

Polyvinyl Chloride (PVC) – (CAS# 9002-86-2) Ethylene derived from petroleum or natural gas is combined with chlorine from salt to produce Ethylene Dichloride (EDC). The EDC is further processed into a gas called Vinyl Chloride Monomer (VCM). During polymerization, the VCM molecules form chains and are converted into a fine white powder - PVC resin.

Calcium Carbonate - (CAS# 471-34-1) calcium carbonate or limestone is mined from the earth and used as an inert filler.

Dioctyl terephthalate (DOTP) - (CAS# 6422-86-2) is prepared by the reaction of dimethyl terephthalate and 2-ethylhexanol.

The base materials for Aspecta® One products are shown below.

According to ISO 14025

Manufacture

The manufacturing stage includes raw material extraction, supplier processing, delivery, flooring manufacturing and product packaging. The mixing of materials, laminating of layers, and packaging of the final product are performed at a facility in China. During production, production waste is reduced and recycled.

Energy resources used in the manufacturing process include electricity, natural gas, and steam. The following are included in the manufacturing stage:

- Extraction and processing of raw materials.
- Processing of recycled raw material from previous product systems.
- Generation of energy and water inputs
- Waste creation and processing, including packaging waste.
- Processing of secondary materials
- Energy Recovery (not applicable)
- Transportation up to factory gate.
- Manufacturing of products and co-products
- Manufacturing and use of packaging
- Production of ancillary materials (not applicable)

Environment and Health During Manufacturing

Aspecta complies with all required environmental, health and safety regulations. Progress is measured and documented in the company's continual improvement program focused on safety, the environment and quality. The manufacturing facility is a "zero waste" facility where all production waste is recycled. Steam used in the process is a by-product from a nearby manufacturer. No process water is used and cooling water is continually recycled. Product trim waste is recycled back into the product. The manufacturing facility carries the following ISO certifications:

- ISO 9001 Quality Management
- ISO 14001 Environmental Management

Delivery

The shipping and transport of products to the jobsite was modeled based on the company's actual production and global customer base.

Installation

This study modeled product installation using 300 grams/square meter of pressure sensitive adhesive and 4.5% installation waste.

Packaging

The vinyl planks are packaged using cardboard, paper and polyethylene film and transported to the installation site.

Conditions of Use

The table below references general maintenance practices used for resilient flooring, including the amount and frequency of water and chemicals used for the purposes of this LCA study. Recommended maintenance includes daily vacuuming or dust mopping and weekly damp mopping with a pH neutral cleaner. Aspecta[®] One has a "no wax" finish, therefore, no floor finish or floor wax is required. Aspecta[®] One's recommended maintenance instructions can be found at <u>http://www.aspectaflooring.com.</u>

According to ISO 14025

Product Maintenance

Name	ASPECTA® ONE	Unit
Dust mop frequency	daily	-
Damp mop / neutral cleaner	weekly	-
Spray buff / finish restorer	monthly	-
Detergent use	0.124	L/m²/yr
Electricity use	0.025	kWh/m²/yr
Finish use	0.22	L/m²/yr
Finish Remover use	0.041	L/m²/yr
Water use	6.2	L/m ² /yr

Environment and Health During Use

Aspecta[®] One flooring products are certified in the FloorScore[®] program for indoor air quality and comply with the VOC emission requirements outlined in the California Department of Public Health (CDPH) Standard Method v1.2-2017 (California Section 01350), effective April 1, 2017. The product's measured concentration of Total Volatile Organic Compounds (TVOCs) is $\leq 0.5 \text{ mg/m}^3$ (and is in compliance with the CDPH Standard Method v1.2-2017). Installation adhesives recommended for use with ASPECTA[®] ONE also comply with the CDHP Standard Method v1.2-2017, California Section 01350 and the requirements of the SCAQMD Rule 1168.

Reference Service Life

A Referenced Service Life (RSL) of 30 years was utilized to remain consistent with the industry average RSL referenced in the Resilient Floor Covering Institute's (RFCI's) Environmental Product Declaration (EPD) for vinyl tile.

Extraordinary Effects

There are no extraordinary effects pertaining to fire, water or mechanical. Performance and fire information is in the Product Standards and Performance section above.

Re-Use Phase

If damaged, any plank or tile can be replaced. No impacts were calculated because replacement is performed infrequently on an "as needed" basis. There is no re-use scenario for paper and cardboard used for packaging. However, they can be recycled.

Disposal

In the United States, Aspecta[®] One products can be recycled in the company's <u>Revise reclamation program</u>. Upon approval, products free of contamination can be returned for reclamation. Customers can email <u>recycle@metroflorcorp.com</u> or contact the company's Customer Service department for details of the program. Although the product and packaging can be recycled, for the purposes of this study and to remain conservative, one hundred percent of the product and packaging was modeled as being disposed of in a landfill.

According to ISO 14025

Life Cycle Assessment: Calculation Rules

Declared Unit

The functional unit according to the PCR is 1 m² of finished flooring for the referenced service life of 30 years.

Name	ASPECTA® ONE	Unit
Declared Unit	1	m²
Conversion factor to 1 kg	0.2253	-

System Boundary

This particular LCA is a Cradle-to-Grave study. A summary of the life cycle stages included in this LCA is presented in the following table.

Module Name	Description	Analysis Period	Summary of Included Elements
A1	Product Stage: Raw Material Supply	2015	Raw Material sourcing and processing as defined by secondary data.
A2	Product Stage: Transport	2015	Shipping from supplier to manufacturing site. Fuel use requirements estimated based on product weights and estimated distance.
A3	Product Stage: Manufacturing	2015	Energy, water and material inputs required for manufacturing products from raw materials. Packaging Materials included as well.
A4	Construction Process Stage: Transport	2015	Shipping from manufacturing site to project site. Fuel use requirements estimated based on product weights and mapped distance.
A5	Construction Process Stage: Installation	2015	Installation and packaging material waste.
B1	Use Stage: Use	N/A	Use of the product.
B2	Use Stage: Maintenance	N/A	Cleaning energy, water, and materials, including refinishing the product.
B3	Use Stage: Repair	N/A	Materials and energy required to repair the product.
B4	Use Stage: Replacement	N/A	Total materials and energy required to manufacture a replacement.
B5	Use Stage: Refurbishment	N/A	Materials and energy required to refurbish the product.
B6	Operational Energy Use	N/A	Energy not required for use.
B7	Operational Water Use	N/A	Water not required for use.
C1	EOL: Deconstruction	2015	No inputs required for deconstruction.
C2	EOL: Transport	2015	Shipping from project site to landfill. Fuel use requirements estimated based on product weight and mapped distance.
C3	EOL: Waste Processing	2015	Waste processing not required. All waste can be processed as is.
C4	EOL: Disposal	2015	Assumes all products are sent to landfill. Landfill impacts modeled based on secondary data.
D	Benefits beyond system	N/A	Module Not Declared

According to ISO 14025

Estimates and Assumptions

Landfilling at End of Life – All products and packaging was considered to be landfilled at end of life.

<u>Installation Tools</u> – Accessory materials, such as, trowels, may be required, athough they are not included in the study as these are multi-use tools and the impacts per declared unit are considered negligible.

Cut-off Criteria

All inputs in which data was available were included. Material inputs greater than 1% (based on total mass of the final product) were included within the scope of analysis. Material inputs less than 1% were included if sufficient data was available to warrant inclusion and/or the material input was thought to have significant environmental impact. Cumulative excluded material inputs and environmental impacts are less than 5% based on total weight of the functional unit. Some material and energy inputs may have been excluded within the GaBi datasets used for this project. All GaBi datasets have been critically reviewed and conform to the exclusion requirement of the PCR. No hazardous and toxic releases are released from the facility.

Background Data

All background data was sourced from GaBi databases. GaBi version 7.3.3.153 was used to complete the assessment.

Data Quality

Geographical Coverage

The geographical scope of the manufacturing portion of the life cycle is a facility in China. All primary data were collected from this location. The geographic coverage of primary data is considered excellent.

The geographical scope of the raw material acquisition is global, primarily China, while the scope of customer distribution, site installation and use portions of the life cycle is global. Locations and shipping distance values were determined through the analysis of purchasing and sales data using GIS mapping software. This data is considered very good.

Disposal and end-of-life geographic coverage (i.e. site of disposal location) was assumed based on research relating to the average distance someone lives from a landfill. This data is considered good.

Time Coverage

Primary data were provided by Aspecta associates and represent all information from Aspecta's facilities for calendar year 2016. Using 2016 data meets the PCR requirements. Time coverage of this data is considered very good.

Data necessary to model cradle-to-gate unit processes was sourced from thinkstep LCI datasets. Time coverage of the GaBi datasets varies from approximately 2010 to present. All datasets rely on at least one 1-year average data. Overall time coverage of the datasets is considered good and meets the requirement of the PCR that all data be updated within a 10-year period. The specific time coverage of secondary datasets can be referenced in the section titled "Generic Data."

Technological Coverage

Primary data provided by Metroflor is specific to the technology that the company uses in manufacturing their product. It is site specific and considered of good quality. It is worth noting that the energy and water used in manufacturing the product includes overhead energy such as lighting, heating and sanitary use of water. Sub-metering was not available to extract process only energy and water use from the total energy use. Sub-metering would improve the technological coverage of data quality. Data necessary to model cradle-to-gate unit processes was sourced from GaBi LCI datasets. Technological coverage of the datasets is considered good relative to the company's actual supply chain. While improved life cycle data from suppliers would improve technological coverage, the use of lower quality generic datasets does meet the goal of this LCA.

According to ISO 14025

Allocation

General principles of allocation were based on ISO 14044. Where possible, allocation was avoided. When allocation was necessary it was done on a physical mass basis.

LCA: Scenarios and Additional Technical Information

The following technical information is a basis for the declared modules and can be used for developing specific scenarios in the context of a building assessment. All indicated values refer to the declared functional unit.

Name	ASPECTA [®] ONE	Unit
A4: Transport to the constru	ction site	
Truck - Fuel Utilization	42	L/100km
Truck - Distance	441	km
Truck - Capacity Utilization	76	%
Ship - Fuel Utilization	16,437	L/100km
Ship - Distance	18,729	km
Ship - Capacity Utilization	48	%
Train - Fuel Utilization	823	L/100km
Train - Distance	149	km
Train - Capacity Utilization	67	%
A5: Installation in the bu	ilding	
Material Loss	0.083	kg

LCA Results

All results are given per square meter of finished flooring, as per the declared unit.

Description of the System Boundary (X=included in LCA; MND=module not declared)

Pro	duct Sta	ge	Consti Proc Sta	ruction cess age	Use Stage						End of Life Stage				Benefits and Loads Beyond the System Boundaries	
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational Water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	MND

According to ISO 14025

Results of the LCA – Environmental Impact: 1 m² of installed finished flooring

	Results of the LCA - Environmental Impact, TRACI 2.1 (One Year)													
Parameter	Unit	A1-A3	A4	A5	B1	B2	B3-B7	C1	C2	C3	C4	D		
Global Warming Air, incl. biogenic carbon	[kg CO2- Equiv.]	7.85E+00	8.32E- 01	1.75E+0 0	0.00E+0 0	8.71E+0 0	0.00E+0 0	0.00E+0 0	5.63E- 02	0.00E+0 0	7.16E- 02	N/A		
Ozone Depletion Air	[kg CFC 11- Equiv.]	4.94E-09	4.22E- 12	1.51E- 10	0.00E+0 0	1.07E- 09	0.00E+0 0	0.00E+0 0	3.88E- 13	0.00E+0 0	7.09E- 14	N/A		
Acidification	[kg SO2- Equiv.]	2.29E-02	1.27E- 02	3.17E- 03	0.00E+0 0	2.18E- 02	0.00E+0 0	0.00E+0 0	2.43E- 04	0.00E+0 0	4.62E- 04	N/A		
Eutrophication	[kg N-Equiv.]	1.23E-03	5.39E- 04	2.86E- 04	0.00E+0 0	8.33E- 03	0.00E+0 0	0.00E+0 0	2.04E- 05	0.00E+0 0	3.85E- 05	N/A		
Smog Air	[kg O3-Equiv.]	4.05E-01	2.67E- 01	5.47E- 02	0.00E+0 0	3.20E- 01	0.00E+0 0	0.00E+0 0	8.05E- 03	0.00E+0 0	9.01E- 03	N/A		
Abiotic Depletion for fossil resources	[MJ surplus energy]	2.05E+01	1.54E+0 0	4.36E+0 0	0.00E+0 0	2.47E+0 1	0.00E+0 0	0.00E+0 0	1.07E- 01	0.00E+0 0	1.16E- 01	N/A		

	Resu	Its of the L	_CA - Envi	ronmental	Impact, C	ML2001 (One year)	- Jan. 201	16			
Parameter	Unit	A1-A3	A4	A5	B1	B2	B3-B7	C1	C2	C3	C4	D
Global Warming Potential	[kg CO2-Equiv.]	7.91E+0 0	8.34E- 01	1.75E+0 0	0.00E+0 0	8.82E+0 0	0.00E+0 0	0.00E+0 0	5.64E- 02	0.00E+0 0	7.19E- 02	N/A
Ozone Layer Depletion Potential	[kg R11-Equiv.]	3.91E- 09	3.97E- 12	1.42E- 10	0.00E+0 0	1.00E- 09	0.00E+0 0	0.00E+0 0	3.65E- 13	0.00E+0 0	6.75E- 14	N/A
Acidification Potential	[kg SO2-Equiv.]	2.16E- 02	1.15E- 02	2.88E- 03	0.00E+0 0	1.84E- 02	0.00E+0 0	0.00E+0 0	1.81E- 04	0.00E+0 0	4.24E- 04	N/A
Eutrophication Potential	[kg Phosphate- Equiv.]	2.59E- 03	1.49E- 03	5.57E- 04	0.00E+0 0	7.61E- 03	0.00E+0 0	0.00E+0 0	4.90E- 05	0.00E+0 0	5.77E- 05	N/A
Photochem. Ozone Creation Potential	[kg Ethene- Equiv.]	2.31E- 03	5.26E- 04	3.69E- 04	0.00E+0 0	2.10E- 03	0.00E+0 0	0.00E+0 0	1.93E- 05	0.00E+0 0	3.33E- 05	N/A
Abiotic Depletion	[kg Sb-Equiv.]	1.88E- 05	9.01E- 08	5.20E- 06	0.00E+0 0	2.20E- 05	0.00E+0 0	0.00E+0 0	9.63E- 09	0.00E+0 0	2.52E- 08	N/A
Abiotic Depletion for fossil resources	[MJ surplus energy]	1.62E+0 2	1.11E+0 1	3.32E+0 1	0.00E+0 0	1.96E+0 2	0.00E+0 0	0.00E+0 0	7.92E- 01	0.00E+0 0	9.26E- 01	N/A

According to ISO 14025

Results of the LCA – Resource Use: 1 m² of installed finished flooring

				Results of	f the LCA - F	Resource Us	е					
Parameter	Unit	A1-A3	A4	A5	B1	B2	B3-B7	C1	C2	C3	C4	D
PERE	MJ, net calorific value	5.73E+00	1.79E-01	9.38E-01	0.00E+00	9.54E+00	0.00E+00	0.00E+00	1.94E-02	0.00E+00	1.12E-01	N/A
PERM	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A			
PERT	MJ, net calorific value	5.73E+00	1.79E-01	9.38E-01	0.00E+00	9.54E+00	0.00E+00	0.00E+00	1.94E-02	0.00E+00	1.12E-01	N/A
PENRE	MJ, net calorific value	1.68E+02	1.12E+01	3.46E+01	0.00E+00	2.07E+02	0.00E+00	0.00E+00	7.95E-01	0.00E+00	9.59E-01	N/A
PENRM	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
PENRT	MJ, net calorific value	1.68E+02	1.12E+01	3.46E+01	0.00E+00	2.07E+02	0.00E+00	0.00E+00	7.95E-01	0.00E+00	9.59E-01	N/A
SM	Kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
RSF	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
NRSF	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
FW	M ³	2.26E+00	3.19E-02	4.11E-01	0.00E+00	4.53E+00	0.00E+00	0.00E+00	2.17E-03	0.00E+00	5.32E-02	N/A
PERE	Use of renewable prima energy resources used a	ry energy ex as raw mate	cluding ren	ewable prim	ary	PENRT	Total use of nonrenewable primary energy resources (primary energy and primary energy resources used as raw materials)					
PERM	Use of renewable prima	ry energy re	sources use	ed as raw m	aterials	SM	Use of secondary materials					
PERT	Total use of renewable p and primary energy reso	primary ener purces used	gy resource as raw mate	es (primary e erials)	energy	RSF	Use of rer	newable sec	ondary fuels	6		
PENRE	Use of nonrenewable pr primary energy resource	imary energ es used as ra	y excluding aw materials	nonrenewa s	ble	NRSF	Use of no	nrenewable	secondary	fuels		
PENRM	Use of nonrenewable pr materials	imary energ	y resources	used as ray	N	FW	Net use o	f fresh wate	r			

Results of the LCA – Output Flows and Waste Categories: 1 m² of installed finished flooring

			Res	sults of the l	_CA - Waste	and Outpu	t Flows					
Parameter	Unit	A1-A3	A4	A5	B1	B2	B3-B7	C1	C2	C3	C4	D
HWD	Kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
NHWD	Kg	5.91E+00	7.75E-02	1.25E+00	0.00E+00	1.22E+01	0.00E+00	0.00E+00	7.64E-03	0.00E+00	4.61E+00	N/A
RWD	Kg	2.51E-03	1.95E-05	5.53E-04	0.00E+00	4.51E-03	0.00E+00	0.00E+00	1.39E-06	0.00E+00	1.29E-05	N/A
CRU	Kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
MFR	Kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
MET	Kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00 0.00E+00 0.00E+00				N/A
EEE	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
EET	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
HWD	Disposed-of-haza	rdous WAS	ГЕ				MFR	Materials	for recycling	J		
NHWD	Disposed-of non-h	nazardous W	/ASTE				MET	Materials	for energy r	ecovery		
RWD	Disposed-of Radio	pactive WAS	STE				EEE	Exported electrical energy				
CRU	Components for re	euse					EET	Exported	thermal ene	rgy		

According to ISO 14025

LCA: Interpretation

A Dominance Analysis evaluates each life cycle stage and compares the impacts from that stage to the sum of the impacts calculated for all declared modules. A Dominance Analysis was completed for the results. The dominance analysis shows the vast majority of the impacts are split between the aggregated A1-A3 product stage and the B2 maintenance phase. The A1-A3 modules include raw material sourcing, transportation and manufacturing. The B2 phase includes maintenance of the product over time. Within the product stage (A1-A3), the largest contributors to the impacts are the polyvinyl chloride and non-phthalate plasticizer. Conversely, while the filler makes up a significant portion of the mass of the flooring, its impact is very low relative to the impact of the other materials present.

It is important to note that data quality may have an impact on the results of an LCA. Overall data quality is considered good. Improvements can be made through the modification of datasets to incorporate more regional specificity, both in terms of energy and technology. However, the data was considered appropriate in relation to the goal, scope and budget of the project.

Comparability

EPDs are not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. The comparison of EPD data may only be possible if all the data sets to be compared were created according to EN 15804 and the building context, respectively and the product-specific characteristics of performance are taken into account. The background database utilized must be reported. Eco-toxicity and human health assessments are excluded from this EPD. The currently available models used to calculate eco-toxicity and human health assessment impact categories have a large amount of uncertainty and variation in their results. For this reason, it is currently not prudent to include such information.

References

- 1. Life Cycle Assessment, Aspecta Resilient Flooring. WAP Sustainability Consulting. September 2017.
- 2. Part A: Calculation Rules for the Life Cycle Assessment and Report Requirements. UL and IBU. v1.3. 2014
- 3. Part B: Requirements on the EPD for Floor Coverings. IBU. v1.4. 2016
- 4. Addendum: Product Category Rules for preparing an environmental product declaration (EPD) for PCR: Part B: Requirements on the EPD for Flooring Products, IBU v1.6. 2014. UL Environment. V1. 2014
- 5. ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines.
- 6. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and procedures.
- 7. The American Society for Testing and Materials (ASTM) International. https://www.astm.org/
- 8. CE Mark / CE Certification Testing https://ec.europa.eu/
- 9. The International Building Code, developed by the International Code Council (ICC), https://www.iccsafe.org/
- 10. European Standard DIN EN 15804: 2012.04+A1 2013. Sustainability of construction works Environmental product declarations – Core rules for the product category of construction products (includes Amendment A1:2013)

